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Abstract: A recently proposed method for surmounting the multiple-minima problem in protein folding is
applied here to the prediction of crystal structures by global optimization of a potential energy function. The
method, self-consistent basin-to-deformed-basin mapping, locates a group of large basins (regions of attraction
of single minima) containing low-energy minima in the original energy surface, by coupling these groups of
minima in the original surface to basins in a highly deformed energy surface, which contains a significantly
reduced number of minima. The experimental crystal structures of formamide, imidazole, and maleic and
succinic anhydrides were predicted as the global minima of the AMBER potential and were found among the
lowest-energy minima for the DISCOVER potential. The results of the predictions serve as tests for evaluating
the two potentials and may serve as a guide for potential refinements. Another important goal of this study
was to clarify the role of the dipole moment contribution in calculations of the crystal electrostatic energy
when the dipole moment of the unit cell is nonzero. Contrary to some practices, it is suggested that the use of
the Ewald summation formula alone, without correcting for the dipole moment of the unit cell, is not the
proper way to compute the electrostatic energy of a crystal and may lead to wrong predictions.

1. Introduction

The problem of crystal structure prediction has attracted
considerable attention in recent years.1-13 This is not surpising
because the possibility of crystal structure prediction is of great
importance for many branches of theoretical and applied
chemistry. Crystal structure prediction plays an important role
in many fields in which the design of new organic solids with
desired physical properties is involved.1,6,14,15Another important
consideration in crystal structure prediction theory is the problem

of polymorphs.2-4,7 In view of the fact that the properties of
crystalline polymorphs may depend strongly on their crystal
structure, knowledge of all possible crystal structures for a given
molecule is critical for production, application, and storage of
a wide range of organic compounds from drugs to energetic
materials. A successful method for crystal structure prediction
would also lead to a better understanding of intermolecular
forces and of processes occurring during crystallization and
crystal growth. In principle, the prediction should identify the
structure that has the lowest free energy under appropriate
conditions. Since this is computationally impractical, the
conventional simplification is to search for the global minimum
of the potential energy. With this simplification, the prediction
of possible crystal structures requires an effective method for
finding all significant low-energy minima of the potential
energy, as well as a reliable potential that can reproduce the
main features of the crystal energy and structure.

Despite much effort, no really efficient method for global
optimization of crystal potential energy has been developed.
The main problems are the existence of a very large number of
local minima on the potential energy surface and its high
dimensionality. Other obstacles include the large number of
interatomic interactions that must be considered in the energy
computations16 and the need to use a mathematical device such
as the Ewald summation17 to calculate the electrostatic energy.
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Various approaches to crystal structure prediction have been
proposed during the last several years; their main feature is to
simplify the global optimization problem by restricting the
search space. One approach is based on a statistical analysis of
the experimental data from the Cambridge Structural Database
(CSD)18 to figure out the most popular arrangements of
molecules in crystals. Symmetry elements and space groups
favorable for formation of close packing of molecules with
different symmetry were first derived theoretically by Kitaig-
orodsky.19,20 Subsequent analyses21-25 of increasing amounts
of structural data contained in the CSD confirmed his results
and provided extensive information about the distribution of
space groups for molecular crystals. This information has been
used widely by different researchers for crystal structure
prediction. For example, Dzyabchenko used information about
the most probable space groups to search for the lowest local
minima of the lattice energy. In his work,26 a systematic search
for optimal packing of benzene was carried out within the
framework of several most popular space groups, taking the
molecular and energy hypersurface symmetries into account.
The same approach was used later for predictions of crystal
structures of organic nitramines.1 Subsequent investigations
included more space groups to increase the probability of finding
the lowest-energy minima. Thus, Chaka et al.2 considered 13
of the most frequent space groups in their prediction of the
crystal structures of eight hydrocarbons. Van Eijck et al.3

generated all possible crystal structures of benzene by a
systematic grid search within 31 space groups.

Another approach to crystal structure prediction involves an
extrapolation of the results obtained for molecular clusters to
crystals. In this case, clusters that serve as starting models for
crystal structure calculations are built in accordance with the
most common types of coordination spheres. Williams4 assumed
a center of symmetry in clusters having an odd number of
benzene molecules. Later Gavezzotti5 proposed a more elaborate
method that included the construction of small clusters using
some typical symmetry elements; the full crystal structure was
then built by translation of the clusters, yielding the most
frequent space groups for organic compounds. The decision to
accept a given cluster as a building block for subsequent crystal
structure calculations was made on the basis of its energy. A
similar cluster-based strategy was implemented in the MOLPAK
program by Holden et al.,6 which searches for possible crystal
packings of minimal unit cell volume.

Several attempts were made to predict crystal structures by
a systematic search within the whole space of structural
parameters. In ref 7, four benzene molecules in a primitive cell
of trivial symmetry (P1) were allowed to move freely and
independently. A similar approach was used by Gibson and
Scheraga,8 who minimized the crystal energy of benzene with
no constraints other than the existence of a lattice.

Taken together, these studies show that the use of symmetry
constraints is quite effective and in most cases locates the
experimental structure. However, there is always a possibility
that a given molecule can form a crystal structure in one of the
less frequently populated space groups. Also, a systematic search
does not guarantee that the global minimum and all lowest-
energy minima of the potential energy will be found.

A number of search methods that assume no crystal symmetry
have been described. Karfunkel and Gdanitz9 employed a Monte
Carlo simulated annealing search strategy to locate the crystal
energy global minimum, and all local minima inside an energy
window, for several organic molecules containing heteroatoms
and polar groups. A similar methodology was utilized in the
MPA program by Williams.10 In ref 11, both a systematic search
and a Monte Carlo approach were used to generate possible
crystal structures of acetic acid. In general, methods based on
a Monte Carlo algorithm do not restrict the search space,
although they fix the number of molecules in the unit cell. They
are successful in locating a group of minima on the potential
energy surface, but they do not solve the global optimization
problem.

Some progress toward a solution of the global optimization
problem for crystals has been achieved recently.12,13A promising
approach to the multiple-minima problem involves methods
based on deforming and smoothing the original energy surface,
thereby greatly reducing the number of minima (occasionally
to a single minimum) and simplifying the conformational
search.27-35

Deformation (smoothing) of the original energy surfacef(x)
is a procedure that deliberately alters the functional form off
in order to remove barriers between minima, making them merge
together, and, therefore, significantly reducing their number. It
is achieved by transforming the original functionf(x) into a new
function F(x,a) (a being a deformation parameter), with the
additional requirement thatF(x,0) ) f(x). The functionF should
be constructed in a way that ensures that the number of minima
will decrease while the deformation parametera increases. A
good example of the functionF(x,a) appears in the diffusion
equation method (DEM),28 in which the deformed function is a
solution of the diffusion equation withf being the initial
boundary condition for the diffusion time (being a deformation
parameter here) equal to zero.

The simplest approach to deformation-based global optimiza-
tion is to track the lowest-energy minimum on the highly
deformed potential energy surface back to the undeformed
surface; however, this approach is successful only for relatively
simple systems.36 Usually, the lowest-energy minimum on the
highly deformed energy surface does not correspond directly
to the global minimum of the original surface, even when there
is only one minimum left at the highest deformation, and
trajectories connecting highly deformed and undeformed minima
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often branch during a reversal of the deformation.12,13A possible
solution to this problem is to track back more than one minimum
in the reversing procedure, and to try to detect branching of
trajectories by using a local search in the vicinity of each
trajectory. This approach was far more successful than the
single- or multiple-trajectory approach, and was applied in the
theoretical prediction of crystal structures of hexasulfur and
benzene.12,13 However, it does not work sufficiently well for
highly demanding applications, such as large Lennard-Jones
clusters37 or polypeptide chains.38

In the present paper, we apply a recently proposed method
for global minimization, the self-consistent basin-to-deformed-
basin mapping (SCBDBM)38 method. The underlying principle
is to locate a group of large basins containing low-energy
minima (superbasins) in the original energy surface. This is
achieved by coupling the superbasins in the original energy
surface to basins in a highly deformed energy surface by iterative
cycles, each of which reverses the deformation and then deforms
the energy surface again from the newly found low-energy
structures, until a degree of self-consistency is attained. A more
detailed description of this algorithm is given in the Global
Optimization Algorithm section. The method has been applied
successfully to predict low-energy structures of polyalanine
chains of length up to 100 amino acid residues38, and to locate
the global minima of Lennard-Jones argon clusters containing
up to 100 atoms.37

Any attempt to predict a crystal structure theoretically, on
the basis of the minimization of the potential energy, requires
a physically reasonable energy function. The model potential
should satisfy two criteria: (a) It should reproduce the experi-
mental structure within a certain accuracy; (b) The crystal
structures corresponding to the lowest-energy minima found for
the potential should represent possible crystal structures, and
one of them, possibly the global minimum, should correspond
to the observed structure. If both criteria are satisfied, two
situations are possible as a result of crystal structure prediction.
First, the minimized experimental structure corresponds to the
global minimum, which means that the potential is correct.
Second, the minimized experimental structure is found among
many low-energy structures that are close in energy to the global
minimum. It has been noted2,6,9 that the latter situation is quite
typical, especially for molecules of regular shape without
pronounced bumps and hollows. In these cases, crystal structure
prediction provides a list of possible structures instead of a single
structure. To eliminate hypothetical structures, it may be
necessary to take into account such factors as entropy effects,
kinetics of crystallization, or the effects of the environment.
On the other hand, the force field used in the computations may
not be accurate enough, and it may be necessary to refine the
potential parameters or change the functional form of the
potential (for example, by using a more accurate charge
distribution model or by including polarization effects) in order
to render all the hypothetical structures as energetically unfea-
sible.

Since any method for predicting crystal structures deals with
a huge number of minima in a very large search space, and
involves a large number of energy and gradient computations,
the potential energy functions must be simple and computa-
tionally inexpensive. The most common simplification separates
the potential energy into a sum of pairwise interatomic interac-
tions, which are usually taken to be sums of repulsive and

attractive terms (van der Waals potential) and the electrostatic
energy. The parameters for the van der Waals potential are
usually optimized by fitting to experimental structures.39-45 Ab
initio calculations of the energies of dimers and small clusters
can be used to obtain the parameters for some molecules but
still are not applicable for very large organic molecules. Various
models have been proposed to describe electrostatic interactions
in crystals.39,40 Most popular models use isolated charges
positioned on the atomic nuclei, derived either from experi-
mental structures39, or by matching the charges to ab initio
molecular electrostatic potentials.40,46 More sophisticated po-
tentials, including representation of the molecular charge
distribution by sets of multipoles on each atomic site, have been
proposed recently.47 In general, polarization effects play an
important role in crystals, especially for conjugated systems and
systems with hydrogen bonds, and must be taken into account
to provide potential directionality. Unfortunately, existing
polarizability models are not accurate enough48 or are too
elaborate49 to be used for massive computations. The common
way to evaluate the quality of a potential is to check its ability
to reproduce the experimental structure as a local minimum of
the potential, with the hope that the potential will be able to
describe the entire energy surface correctly. This satisfies the
first criterion in the previous paragraph, but not necessarily the
second one.

The goal of the present study was to apply the SCBDBM
method38 to the calculation of crystal structures of polar organic
molecules, and to evaluate two popular potential energy
functions, DISCOVER42,43,50and AMBER,46 according to the
two criteria a and b. Both potentials have simple functional
forms (9-6-1 and 12-6-1 for DISCOVER and AMBER,
respectively), and contain electrostatic parameters obtained in
different ways. Our results suggest that the AMBER potential
is better suited for crystal structure prediction than DISCOVER.

A further goal of the present work was to clarify the role of
the dipole moment of the unit cell in energy computations. Even
if the experimental crystal structure corresponds to a nonpolar
space group, the unit cells in the structures considered during
global search computations may have large dipole moments,
because no symmetry constraints other than the periodic
condition are assumed during the search. A large dipole moment
of the unit cell raises questions about the very definition of the
electrostatic energy of a crystal, since this energy depends not
only on the arrangement of the molecules in the unit cell, but
also on the shape of the macrocrystal, and on the choice of the
reference unit cell in the computations. A rigorous mathematical
approach requires the addition of a correction term, in the form
of a surface integral, to the usual Ewald summation.51-54 Our
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results obtained with the AMBER and the DISCOVER force
fields suggest that computations of crystal energies using the
Ewald summation with no dipole correction, and without the
restriction to nonpolar crystals, lead to artifact structures among
the lowest energy structures; sometimes, the prediction may be
wrong because of this factor alone. In contrast to our previous
calculations,12,13 which treated only rigid molecules with no
dipole moment, the rigid molecules considered here each have
a dipole moment. Finally, the global optimization approach is
carried out without resort to information about the space group,
and normally the number of molecules in the unit cell is also a
predicted value;12,13 however, in this paper, we used experi-
mental information about that number to save computational
time.

2. Calculation of the Potential Energy Function in
Crystals: Role of the Dipole Moment of the Unit Cell

Assuming a given pairwise potential, the energy per molecule
of a real crystal in vacuo should theoretically be calculated as
the total energy of the entire cluster of periodically arranged
molecules, divided by the number of molecules comprising the
cluster; i.e., the sum of all pairwise interactions would have to
be computed. Since only large crystals are of interest here, this
way of calculating the crystal energy is computationally
impossible. A natural way to circumvent the problem seems to
be to restrict the computations to a chosen unit cell inside the
crystal and to its interactions with other unit cells within a certain
cutoff. However, as discussed later in this section, this way of
computing the energy of the crystal is not always correct, even
when imposing huge cutoffs.

The sum of all pairwise interactions can be represented in
the form of a sum over all unit cells of the crystal, where each
term of the sum is the internal energy of the unit cell, and half
the sum of all interactions between the atoms of that unit cell
and all other atoms. Because of the computational cost, the latter
summation must be restricted to only atoms satisfying certain
cutoff criteria relative to the unit cell; moreover, a single unit
cell is chosen as a reference cell, representative of all cells in
the crystal. The energy defined in this way may be called a
“simplified” energy. Three basic questions must be asked: Is
the final value of the “simplified energy” independent of the
choice of the order of summation, i.e., of the way the infinite
lattice summation is approximated by a finite summation? Is
the final value of the “simplified energy” independent of the
choice the reference unit cell? How is the true energy of a real
crystal in vacuo related to the “simplified” energy?

The problem simplifies if the pairwise interactions are only
of Lennard-Jones type (e.g., for the crystal ofS6). In this case,
all pairwise interactions decrease in the order of 1/r6, and the
sum of all interactions between the reference cell atoms and all
other atoms converges unconditionally. Consequently, the
limiting value of the energy is independent of the order of
summation, and high accuracy can be achieved with relatively
small cutoffs. The limiting value is the same for any choice of
the reference unit cell unless it is close to the surface of the
crystal; since the number of such unit cells is proportional to
the 2/3 power of the overall size of the crystal, the simplified
energy is an accurate measure of the true Lennard-Jones energy
of the crystal in vacuo.

The presence of an electrostatic term in pairwise interatomic
interactions greatly complicates the answer to the three questions

above, because the 1/r convergence rate of the electrostatic
interactions does not guarantee the unconditional convergence
of the sum of interactions between the atoms in the reference
cell and all other atoms.

If the dipole moment of the unit cell is zero, unconditional
convergence can still be achieved, if, additionally, it is assumed
that only complete, uncharged molecules (or uncharged units
such as Na+ Cl-) are considered in the computations. The sum
of all interactions between theatomsof the reference unit cell
and all otheratomsof a finite crystal can be represented as a
sum of interactions between thereference unit celland all
moleculesnot belonging to that unit cell. This is a triple sum,
in which the outer sum is taken over all molecules not belonging
to the reference cell, the middle sum is taken over all atoms of
those molecules, and the inner sum is over all atoms in the
reference cell. Since the dipole moment of the unit cell is zero,
and the molecules are uncharged, the outer sum exhibits at worst
a 1/r4 behavior as a sum of quadrupole-dipole interactions and
is unconditionally convergent. As in the case of pure Lennard-
Jones interactions, the true electrostatic energy per molecule of
a crystal in vacuo is the same as the “simplified” energy
computed by using the cutoff approach, for any cutoff criterion
and any choice of the reference unit cell. However, the need to
sum over pairs, each comprising a unit cell and a molecule, to
achieve the 1/r4 behavior, rather than pairs of atoms, greatly
increases the computational cost.

Fortunately, if the dipole moment of the unit cell is zero, the
cutoff approach can be replaced by the well-known Ewald
summation,13,17,54which enables a limiting value of the elec-
trostatic energy to be computed very efficiently, and with
practically unlimited accuracy. The true electrostatic energy of
a crystal in vacuo can then be calculated with good accuracy
and reasonable computational cost, if the cutoffs for the Ewald
summation both in the real and reciprocal space are not too
small, and the constantR in the Ewald summation is properly
chosen.13 The dipole moment of the unit cell is guaranteed to
be zero if all computations are carried out with the assumption
that the crystal symmetry is defined by one of the nonpolar
space groups, since the dipole moments of the molecules in the
unit cell cancel out; however, that assumption is stronger than
the requirement that the dipole moment of the unit cell be zero.
In papers dealing with crystal energy computations, where
nonpolar space groups are assumed, the dipole moment issue
is usually not mentioned (e.g., refs 1 and 2), and in ref 9 it is
not addressed at all, although no symmetry elements are
assumed.

It cannot be emphasized too strongly that the Ewald sum-
mation is merely a mathematical trick for speeding convergence.
All assumptions associated with the way it was derived should
be carefully verified before it is applied, one of the most
important being that the dipole moment of the unit cell is zero.
The Ewald summation cannot be treated as a universal “physi-
cal” way to compute the electrostatic energy. If the unit cell
has a nonzero dipole moment, the computation of the true energy
of the crystal in vacuo becomes more complicated. With a given
choice of a reference unit cell, the “simplified” electrostatic
energy can be computed as the sum of the Ewald energy and a
correction term accounting for the dipole-dipole interaction
between the reference cell and all other unit cells. A precise
mathematical derivation of appropriate formulas can be found
in ref 51, and in a more compact form in ref 54. Since the size
of the macrocrystal is assumed to be large, the correction can
be represented as a two-dimensional surface integral.51,54
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The value of the correction term depends on the shape of the
macrocrystal; this is where the conditional convergence of the
electrostatic interactions shows up. Analytical formulas are
available for several simple shapes such as a sphere, a cube,
and a rectangular parallelepiped;51,54for example, the correction
term for a spherical crystal or a cubic-shaped crystal takes the
form51 2πp2/3V, wherep and V are the values of the dipole
moment and the volume, respectively, of the unit cell. If the
macrocrystal takes the shape of an infinitely long needle with
the dipole moment of the unit cell in the needle direction, or a
shape of an infinitely large platelet with the dipole moment in
its plane, the correction term vanishes. To compute the true
energy numerically, all “simplified” energies must be averaged
over all reference unit cells because the “simplified” energies
also depend on the choice of the reference unit cell.54 Since
every unit cell in the crystal may be considered as the reference
cell, numerical computation of the true electrostatic energy
involves a five-dimensional grid evaluation of the integrand in
the surface integral. Accurate computation of the true energy
of a crystal whose dipole moment is not zero is not only
computationally expensive but also varies with the shape of the
macrocrystal.

The above considerations seem to imply that the computation
of the electrostatic energy of crystals makes sense only if all
energy computations,including those for intermediate structures
appearing in global and local minimizations, are carried out
within the class of crystals whose unit cells have reasonably
small dipole moment. There is an ongoing discussion of this
matter in the literature,51-54 but some papers53,54 suggest that
there should be no difference in the treatment of crystals with
zero and nonzero dipole moment; they propose using only the
Ewald summation and neglecting all other effects, including
the surface integral that describes the contribution of the dipole
moment. They argue54 that a polar crystal in vacuo will assume
the shape of a needle or a platelet, with the dipole moment along
the needle or in the plane of the platelet, respectively, to remove
the otherwise positive energy resulting from a nonzero dipole
moment. If the crystal were surrounded by a medium of very
high dielectric constant, the surface effect would be canceled
exactly53,54by external charges that accumulate on the surface;
this is sometimes referred to as a thin foil boundary condition.

We challenge that point of view. Since the existence of the
dipole moment correction term is a mathematical fact and that
term may account for more than 50% of the total energy, it

cannot simply be dismissed without strong theoretical and
numerical evidence. In our opinion the statement, that crystals
in vacuo can always find a shape for which the surface effect
would vanish (a needle or platelet) and the electrostatic energy
would be at its lowest, cannot be applied to the physical
situation, because it implies that the ratio between the surface
area of the ends of the needle and its total surface area, or
between the surface area of the edge of the platelet and its total
surface area, is infinitesimally small. If the ratio between the
length of the needle and its thickness is more realistic, the
surface effect is significant. To determine this, we calculated
the average dipole moment correction term for a square cross-
section needle with the dipole moment along the needle, by
using the surface integral from ref 54 which involves five-
dimensional numerical evaluations of the integrand; two ratios
between the length of the needleL and the sidea of the square
were considered, namely 10 and 5. The averaging was done
over all reference cells lying no closer than 10% ofa to the
side walls of the needle and no closer than 10% ofL to the
ends of the needle to make sure that all necessary assumptions54

for applying the formula were satisfied. With the ratios 10:1
and 5:1, the surface effect accounted for about 5% and 15% of
the spherical correction term 2πp2/3V, respectively. If the
averaging was done by including more molecules lying closer
to the boundaries of the needle, those numbers would be higher.
For the structure of formamide with energy-21.9 kcal/mol
calculated with AMBER in Table 3, for example, 5% of the
spherical correction term would amount to more than+0.6 kcal/
mol, which would separate this high dipole moment structure
from the lowest energy structures.

If the crystal is surrounded by a medium of a very high
dielectric constant, and the external charges are “borrowed” from
that medium and compensate the surface effect, the crystal can
therefore no longer be treated computationally in isolation from
that medium.

To provide further support for our opinion, we carried out
theoretical crystal structure predictions, based on global mini-
mization of the potential energy function for six polar molecules,
with both AMBER and DISCOVER. These are presented in
the Results and Discussion section.

3. Global Optimization Algorithm

3.1. SCBDBM Method.Since details of the method are given
elsewhere,38 we present only a brief description here. We wish

Table 1. Parameters of Experimental and Locally Minimized Experimental Structures for Crystals with Zero Dipole Moment of the
Experimental Unit Cella

method space group energy,b kcal/mol V,c Å3 a, Å b, Å c, Å R, deg â deg γ, deg

Formamide
exptl P21/n, Z ) 4 217.1 3.54 8.95 6.97 90.0 101.1 90.0
DISCOVER P1h, Z ) 4 -16.36 220.5 3.54 9.79 6.50 94.9 96.6 98.3
AMBER P21/n, Z ) 4 -22.19 202.6 3.48 9.56 6.10 90.0 95.5 90.0

Imidazole
exptl P21/c, Z ) 4 347.3 7.57 5.37 9.78 90.0 119.1 90.0
DISCOVER P21/c, Z ) 4 -19.51 340.1 8.10 4.88 9.89 90.0 119.5 90.0
AMBER P21/c, Z ) 4 -19.56 324.5 8.07 4.80 9.85 90.0 121.8 90.0

Maleic anhydride
exptl P212121, Z ) 4 434.6 7.18 11.23 5.39 90.0 90.0 90.0
DISCOVER P212121, Z ) 4 -19.59 402.8 6.52 12.18 5.07 90.0 90.0 90.0
AMBER P212121, Z ) 4 -23.03 394.3 6.76 11.49 5.07 90.0 90.0 90.0

Succinic anhydride
exptl P212121, Z ) 4 440.5 6.96 11.71 5.40 90.0 90.0 90.0
DISCOVER P212121, Z ) 4 -22.31 428.3 6.68 12.04 5.33 90.0 90.0 90.0
AMBER P212121, Z ) 4 -27.01 418.0 6.78 11.62 5.31 90.0 90.0 90.0

a The runs with and without the spherical dipole moment correction term produced identical results and maintained zero dipole moment of the
unit cell. b Energy per molecule.c Volume of the unit cell.

Crystal Structure Prediction by Global Optimization J. Am. Chem. Soc., Vol. 122, No. 5, 2000911



to find the global minimum of an energy functionf(x), where
x is the collection of the lattice vectors, and parameters defining
the position and orientation of each rigid molecule in the unit
cell.

Consider a mappingF(x,a), wherea defines the extent of a
deformation, such thatF(x,a) becomes smoother with a gradual
decrease in the number of minima whena increases; assume
that F(x,0) ) f(x). With increasinga, the number of minima
gradually decreases, because some of the minima merge into
one. As deformation proceeds, groups of individual minima are
first merged, definingsuperbasinsof these groups of minima
for certain values of the deformation parametera. As the
deformation parameter increases, the superbasins from the
smaller deformation (lower-order superbasins) also merge,
constituting higher-order superbasins. Finally, for a very high
deformation, only a few minima remain.

A logical procedure for locating the global minimum off(x)
would be first to locate the highest-order (most deformed)
superbasin related to this minimum and then to locate within it
the superbasins of gradually lower order (lower deformation)
that still contain this minimum, until the deformation is fully
reversed. The major difficulty in proceeding in this manner is
that there is no straightforward relation between the values of
F at its minima and the corresponding minimum values off.
Therefore, one can never tell which superbasin corresponds to
the global minimum of the original energy function, based only
on the “energy” relations between superbasins. Consequently,
it is not sufficient to reverse the deformation once only, to find
the global minimum off, even if a multitrajectory search is
carried out during the reversing procedure. To surmount this
problem, we propose a self-consistent procedure that finds the
coupling relations between superbasins of different order, by

Table 2. Parameters of Experimental and Locally Minimized Experimental Stuctures for Crystals with Nonzero Dipole Moment of the
Experimental Unit Cell

method space group energy,a kcal/mol V,b Å3 D,c D ED,d kcal/mol a, Å b, Å c, Å R, deg â, deg γ, deg

Pyrimidine
exptl Pna21, Z ) 4 403.7 11.55 9.46 3.69 90.0 90.0 90.0
DISCOVER

withe Pna21, Z ) 4 -14.19 416.2 3.5 0.23 11.32 9.98 3.68 90.0 90.0 90.0
withoutf Pna21, Z ) 4 -14.46 416.9 4.1 0.33 11.05 9.99 3.77 90.0 90.0 90.0

AMBER
with Pna21, Z ) 4 -15.28 394.7 3.7 0.35 11.01 9.83 3.64 90.0 90.0 90.0
without Pna21, Z ) 4 -15.64 394.9 4.0 0.34 10.88 9.84 3.69 90.0 90.0 90.0

Formic acid
exptl Pna21, Z ) 4 193.0 10.24 3.52 5.36 90.0 90.0 90.0
DISCOVER

with Pna21, Z ) 4 -14.69 198.6 4.2 0.66 10.66 3.38 5.51 90.0 90.0 90.0
without Pna21, Z ) 4 -15.43 196.4 4.6 0.80 10.69 3.29 5.58 90.0 90.0 90.0

AMBER
with Pna21, Z ) 4 -18.75 190.7 0.2 0.00 10.53 3.50 5.17 90.0 90.0 90.0
without Pna21, Z ) 4 -18.75 190.8 0.3 0.00 10.54 3.50 5.17 90.0 90.0 90.0

a Energy per molecule.b Volume of the unit cell.c Dipole moment of the unit cell.d Dipole moment spherical correction term.e Results of
minimization with the dipole moment spherical correction term included.f Results of minimization with the dipole moment spherical correction
term not included.

Table 3. Parameters of Calculated Structures Obtained by Global Optimization Compared with Locally Minimized Experimental Structures
for Formamide with Discover and Ambera

method space groupb energy,c kcal/mol V,d Å3 D,e D ED,f kcal/mol a, Å b, Å c, Å R, deg â, deg γ, deg

DISCOVERg

minimized exptl P1h, Z ) 4 -16.36 220.5 0.0 0.00 3.54 9.79 6.50 94.9 96.6 98.3
I i (min exptl) P1h, Z ) 4 -16.36 220.5 0.0 0.00 3.54 9.79 6.50 94.9 96.6 98.3
II P1h, Z ) 2 -16.25 213.6 0.0 0.00 5.23 6.62 7.02 108.9 69.0 102.1
III Pcmn, Z ) 4 -16.15 214.9 0.0 0.00 4.88 5.67 7.76 90.0 90.0 90.0

DISCOVERh

minimized exptl P1h, Z ) 4 -16.36 220.5 0.0 0.00 3.54 9.79 6.50 94.9 96.6 98.3
I Pn, Z ) 2 -16.37 216.5 12.9 9.37 5.08 6.44 3.49 90.0 108.7 90.0
II Pb, Z ) 4 -16.29 217.7 12.9 9.27 6.49 5.09 7.34 90.0 116.2 90.0
III Pa, Z ) 4 -16.25 220.7 13.0 9.27 5.09 6.67 6.91 90.0 70.0 90.0

AMBERg

minimized exptl P21/n, Z ) 4 -22.19 202.6 0.0 0.00 3.48 9.56 6.10 90.0 95.5 90.0
I (min. exp.) P21/n, Z ) 4 -22.19 202.6 0.0 0.00 3.48 9.56 6.10 90.0 95.5 90.0
II P212121, Z ) 4 -22.19 207.9 0.0 0.00 3.58 6.16 9.42 90.0 90.0 90.0
III P21/n, Z ) 4 -22.18 203.1 0.0 0.00 5.73 6.24 6.05 90.0 110.0 90.0

AMBERh

minimized exptl P21/n, Z ) 4 -22.19 202.6 0.0 0.00 3.48 9.56 6.10 90.0 95.5 90.0
I (min. exp.) P21/n, Z ) 4 -22.19 202.6 0.0 0.00 3.48 9.56 6.10 90.0 95.5 90.0
II P1, Z ) 4 -21.98 205.3 1.4 0.07 3.48 9.52 6.21 92.9 91.2 92.2
III P1h, Z ) 4 -21.94 197.2 18.9 13.72 4.92 6.80 7.00 60.9 82.4 74.3

a All structural parameters, volumes, and dipole moments of the unit cells are reported for representation withZ ) 4. b Space group symmetry
and number of molecules in the unit cell (Z) for the final structure (when it is possible to represent the final structure with a smaller number of
molecules in the unit cell, the space group corresponding to this representation is presented, but all other parameters are given forZ ) 4). c Energy
per molecule.d Volume of the unit cell.e Dipole moment of the unit cell.f Dipole moment spherical correction term.g Results of minimization
with the dipole moment spherical correction term included.h Results of minimization with the dipole moment spherical correction term not included.
i Roman numbers denote the order of the minima obtained in the run in ascending order of the energy; if the minimized experimental structure was
found in the run, it is reported with the note min exptl.
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iterating steps consisting of reversing the deformation and then
reintroducing the deformation. The maximum number of
trajectories to be followed is fixed at an arbitrary numberp.

The procedure is outlined in Figure 1. It consists of a series
of macroiterations. Each macroiteration establishes the coupling
between superbasins of consecutive order and contains a self-
consistent procedure within it. In macroiterationi, the parameter
a(i), which controls the deformation, changes between two
extreme valuesamax

(i) andamin
(i) . For macroiterationi + 1, amax

(i+1) )
amin

(i) andamin
(i+1) ) amin

(i) /∆ (or 0 in the last macroiteration), where
∆ is a logarithmic step length. The first macroiteration is
initialized with randomly generated and minimized conforma-
tions in the most deformed space, while each subsequent
macroiteration starts where the previous one left off.

Within each macroiteration, minima found on the most
deformed surface witha ) amax

(i) are tracked back to the least
deformed surface witha ) amin

(i) , by decreasing the deformation
parametera and searching locally for new minima at each
reversal step, in the vicinity of the minima already found; this
is the reversing procedure. Subsequently, new minima found
on the least deformed surface are tracked to the most deformed
surface, by gradually increasing the parametera and carrying
out local minimizations without any local search at each step.
This is the reversed-reversing procedure. This cycle is continued
until no new minima are found on the least deformed surface
or until the maximum allowed number of cycles is reached.

3.2. Application to Crystal Structure Prediction. The
smoothing deformation chosen in the present work is the
distance scaling deformation which was used in our earlier

work,13 where the distance scaling method (DSM) was applied
for predicting the structure of benzene. It is very simple to
implement, is designed to work with pairwise interactions, was
shown to perform reasonably well in finding the global minima
of Lennard-Jones and water clusters,27,31,32and has been applied
successfully to predict the crystal structures of benzene and
hexasulfur molecules.13 In the DSM,27 the site-site distancerij

in the pairwise interaction is transformed intor̃ ij as follows:

The parameterr0,ij in eq 1 is the position of the minimum of
the undeformed pairwise interaction term. When the deformation
parametera is increased, the original function of the site-site
distance (e.g., the Lennard-Jones potential) is flattened, but the
position of its minimum and the function value at the minimum
remain the same if the value of the parameterb is taken to be
1 (as in the original formulation27 of the DSM). The parameter
b controls the position of the minimum and remains constant
during the calculations. For values ofb greater or equal to 1,
the position of the minimum of the deformed site-site function
shifts to larger values of the site-site distance while, forb <
1, it shifts toward zero; if the deformation parametera is greater
than 1/(1- b), the two-body potential becomes totally attractive.
Application of this deformation to a pairwise potential makes
it relatively long-ranged by diminishing energy barriers between
minima, by lowering repulsion for all values ofb, and lowering
attraction if b > 0. For a pairwise interaction which has a
minimum, like a Lennard-Jones interaction, the value ofr0,ij

should be chosen as the position of this minimum; for
electrostatic interactions,r0,ij should be large enough to ensure
that the Coulomb interaction is weak at this distance, and this
energy contribution will effectively be eliminated at large
deformations. We choose the same value ofr0,ij ) r0,elecfor all
electrostatic terms, so that no interactions are smoothed faster
than others. The Ewald summation was used to speed the
calculations of the electrostatic energy; a detailed description
of the way the Ewald summation was applied for the deformed
electrostatic interactions can be found in ref 13.

When the deformation parametera increases, the crystal
shrinks because the pairwise interactions become more long-
ranged and more molecules attract each other; in addition, the
repulsive part of the potential is flattened by the deformation.
If the parameterb of the deformation equals 1, the unit cell
tends to collapse, and molecules overlap in space for large
deformations. Many local minima are not removed, and an
efficient reversing procedure becomes impossible. If the pa-
rameterb is set to a value larger than 1, molecules are forced
to stay apart by shifting the local minima of the pairwise
interactions to larger intermolecular distances. Smaller values
of r0,elec in the deformation of the electrostatic parts of the
potential make the electrostatic part of the potential vanish more
slowly. To test different values ofb andr0,elec, several reversed-
reversing procedures were carried out, starting with a set of 9
randomly generated local minima of the possible crystal
structures of formamide (one of the molecules considered in
this work). The values ofb ) 1.75 andr0,elec ) 1 and the
logarithmic scale of deformation were chosen to achieve the
maximum degree of merging between minima, so as to distribute
the merging of minima uniformly throughout the deformation.
The relative energies of the 9 minima of the formamide crystal
along the reversed-reversing trajectories are shown in Figure
2; abrupt vertical drops in relative energy represent merging of
minima. The plot shows that there is no need to divide the

Figure 1. Block diagram of the reversing procedure, coupled with
the reversed-reversing procedure within a single macroiteration.

r̃ ij )
rij + ar0,ij

1 + ba
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deformation interval into more than two parts (i.e., only two
macroiterations are sufficient), because there is only one region
of frequent merging of minima, betweena ) 1.5 and 2.5
(log a ) 0.2-0.4). Also, the maximum value of the deformation
parameter could be chosen as 30 (loga ) 1.48), because all
merging occurred for lower values ofa. We chose to use two
macroiterations, the first withamax

1 ) 30 andamin
1 ) 2.18, and

the second withamax
2 ) 2.18 andamin

2 ) 0.
A side effect of avoiding the collapse problem is the relatively

high flattening of the potential in the rotational degrees of
freedom due to an increase in the distance between molecules
coupled with increasingly flattened pairwise interactions. This
behavior, however, may be corrected by using a properly
designed local search as discussed below.

A local search plays a very important role in the algorithm
because it detects branching during the reversing procedure.
However, this search should be carried out in the vicinity of a
starting minimum; otherwise the relationship between minima
may be lost (i.e. the newly found minimum may not be related
to the previous one but belong to a completely different “tree”
of trajectories). The simplest way to carry out the local search
is by a random perturbation of the structures, followed by local
energy minimization, as implemented in the multiple-trajectory
perturbation approach;12,13 in such local searches, we perturb
all variables of the system. There are two drawbacks to this
kind of local search: (i) Quite often, it fails to find another
basin due to the relatively small perturbations of the lattice
vectors and molecular positions (the perturbations have to be
small in order carry out the search in the vicinity of a starting
minimum). (ii) The search of the rotational degrees of freedom
is inadequate. The latter results from the fact that the deforma-
tion significantly flattens the rotational part of the energy
function, making the system very insensitive to rotations of
molecules.

Application of a linear search provides a remedy for the first
problem: the search was carried out along a randomly generated
direction in multidimensional space and stopped when a new
basin was found or a predefined maximum number of steps was

exhausted. To circumvent the second problem, we designed a
short systematic search over the rotational degrees of freedom
of the molecules. The potential energy was computed for four
consecutive values of each Eulerian angle of each molecule,
while the rest of the molecules were kept fixed. The lowest-
energy configuration was then chosen for subsequent local
minimization.

The number of trajectories was chosen to be 10. The
maximum number of cycles within the first macroiteration was
set to 4 and within the second one to 10. During the local search,
all variables were perturbed; the Eulerian angles of the molecules
were perturbed randomly by no more than 20°, and the positions
of the atoms and the values of the lattice vectors by no more
than 1 Å.

With this choice of parameters, the method focuses on
searching for a few lowest-energy structures and not on finding
the complete set of the lowest-energy structures, which would
require significantly larger computer resources. Because of this,
only the first few computed structures are truly the lowest-energy
ones; all others correspond to a sample of very low energy
structures, and some structures may be missing in the set.

4. Molecular Models

For the calculations, we selected a number of small organic
molecules which are interesting from the theoretical as well as
the practical point of view. Several criteria were used for the
selection. We were interested in molecules of biological
importance, for which reliable potentials should be available.
The molecules should be small, rigid, and contain C, H, N, and
O atoms. To test the ability of a given potential to describe
different types of interactions in crystals, such as hydrogen bonds
and π-π interactions, planar aromatic and hydrogen-bonded
molecules were chosen. The crystal structures were chosen so
that some of them had unit cells with zero dipole moments and
others had nonzero dipole moments. The following molecules
were selected: formamide, imidazole, maleic and succinic
anhydrides, pyrimidine, and formic acid, all of them being
assumed to be rigid.

We deduced molecular models from the experimental data.
Since neutron diffraction experiments provide more accurate
information about positions of hydrogen atoms, we used neutron
diffraction data where available. The X-ray diffraction data were
used for succinic and maleic anhydrides and for pyrimidine.
For formamide and formic acid, molecular geometries obtained
by neutron diffraction for corresponding deuterio compounds
were used. All molecules under consideration except succinic
anhydride are essentially planar; the largest deviation from the
plane through the ring atoms occurrs for hydrogen atoms of
maleic anhydride and is equal to 0.13 Å. Succinic and maleic
anhydrides and pyrimidine have approximate point symmetry
group mm2, and formamide, imidazole, and formic acid ap-
proximate point symmetry groupm (Figure 3). The point
symmetry groups were used to deduce symmetric molecular
models. The positions of hydrogen atoms were shifted along
the experimental bond directions to give the average experi-
mental bond lengths of 1.09 Å for C-H and 1.04 Å for N-H,
obtained by neutron diffraction.

The molecular models used in this work have geometrical
parameters slightly different from those of the experimental
ones; the issue of the influence of the geometrical model on
the predicted structures is addressed in the next section.

5. Results and Discussion

5.1. Local Minimizations of the Experimental Structures.
An important criterion that must be satisfied by any potential

Figure 2. Changes in the order of the energies during the reversed-
reversing procedure for the 9 low-energy, randomly generated minima
in the undeformed energy surface of the formamide crystal. The vertical
axis describes the relative energy difference between the current
minimum and the lowest-energy minimum for a given value of the
deformation parameter (the difference between the energy of the current
minimum and the energy of the lowest-energy minimum in the sample,
divided by the absolute value of the latter). The procedure starts from
the 9 minima in the undeformed energy surface (a ∼0). With increasing
deformation, the trajectories ultimately merge to four minima neara
) 30 (loga ) 1.5). Merging of minima is represented by abrupt vertical
drops in relative energies.
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is its ability to reproduce an experimental structure. For this
purpose, we first conducted local minimizations for all mol-
ecules, starting from the experimental structures, with and
without the dipole moment spherical correction term 2πp2/3V.
The parameters of the experimental and the energy-minimized
structures are given in Tables 1 and 2.

Formamide crystallizes in space groupP21/n with the number
of molecules in the unit cellZ ) 4.55 The crystal structure
consists of puckered sheets of molecules. Within the sheets,
pairs of molecules associate about the centers of symmetry to
form almost coplanar bimolecular units. Puckering of the sheets
results from the tilt of these units relative to one another. Within
each sheet, hydrogen bonds of two types exist: one type links
molecules together to form bimolecular units (H‚‚‚O bond length
1.92 Å; N-H‚‚‚O angle 174.9°); the other type links bimolecular
units together to form sheets (H‚‚‚O bond length 1.85 Å;
N-H‚‚‚O angle 167.3°). After a local minimization with the
DISCOVER potential, the crystal structure contained
N-H‚‚‚O bonds linking molecules within bimolecular units
(bond length and bond angle 1.98 Å and 173.6°) and two types
of hydrogen bonds linking bimolecular units within the sheets
(bond lengths and bond angles 1.94 Å and 170.0°, and 1.91 Å
and 172.9°, respectively). The orientation of the bimolecular
units changed in such a way that the sheets of molecules became
almost planar; as a result, the space group symmetry became
P1h, with two independent molecules in the asymmetric unit.
The average deviations of the unit cell vector lengths and angles
from the experimental values were 5.4% and 6.3°, respectively.

When the crystal structure of formamide was optimized with
the AMBER potential, the initial symmetry was preserved and
the topology of the sheets was reproduced. However, the
orientation of molecules changed significantly (Figure 4A). The
length of the hydrogen bonds connecting the molecules in the
bimolecular units was much shorter in the minimized structure
(1.82 Å), which in turn led to significant shortening (12.5%) of
the lattice parameterc. Other hydrogen bond parameters changed
little. The bond lengths and N-H‚‚‚O angles in the minimized
structure were equal to 1.82 Å and 175.3°, and 1.81 Å and
171.5° for the first and the second types of hydrogen bonds,
respectively. The average deviations of the unit cell parameters
from the experimental values were 7% for lattice lengths and
5.6° for lattice angles.

The crystal structure of imidazole56 (space groupP21/c, Z )
4) is based on endless chains of planar molecules, connected
by strong N-H‚‚‚N hydrogen bonds (H‚‚‚N distance 1.81 Å).
Both the DISCOVER and the AMBER potential satisfactorily
reproduce the experimental structure (Figure 4B), except that
the hydrogen bond length is much longer in the case of the
structure minimized with AMBER (1.98 Å). The average
deviations of the unit cell parameters were 2.9% and 4.4% for
the DISCOVER and the AMBER potentials, correspondingly.
For both potentials, the largest deviation took place for the cell
lengthb and did not exceed 10.5% (Table 1).

Maleic57 and succinic58 anhydrides are quite similar in their
molecular and crystal structures and represent an example of
isostructural compounds (Table 1). The final structures obtained
with both the DISCOVER and the AMBER potential had the
same space group symmetry as the experimental structures. In
general, the DISCOVER potential reproduces the crystal
structures of these compounds less well than AMBER. The
average deviations of the unit cell parameters were 3.9% and
2.3% for maleic anhydride and 1.4% and 0.8% for succinic
anhydride with DISCOVER and AMBER, respectively (Figure
4C,D). The deviations in unit cell parameters were smaller for
succinic anhydride with both potentials.

Pyrimidine59 forms a polar structure with symmetryPna21,
Z ) 4. The crystal structure consists of stacks of nearly parallel
molecules which overlap slightly. The axes of the stacks are
parallel to thec axis. In all cases, the final structures obtained
with DISCOVER and AMBER had the same space group
symmetry as the experimental structure (Figure 5A). The
deviations in the lattice parameters of pyrimidine were similar
in magnitude (less than 4.0%), but the volumes of the unit cell
increased with DISCOVER and decreased with AMBER (Table
2). The dipole moments of the unit cells in the pyrimidine
structures minimized with and without the dipole moment
correction term were nearly the same for DISCOVER and

(55) Torrie, B. H.; O’Donovan, C.; Powell, B. M.Mol. Phys.1994, 82,
643.

(56) Martinez-Carrera, S.Acta Crystallogr.1966, 20, 783.
(57) Marsh, R. E.; Ubell, E.; Wilcox, H. E.Acta Crystallogr.1962, 15,

35.
(58) Ehrenberg, M.Acta Crystallogr.1965, 19, 698.
(59) Furberg, S.; Grøgaard, J.; Smedsrud, B.Acta Chem. Scand.1979,

B33, 715.

Figure 3. Molecular structures considered in this study.

Figure 4. Experimental structures (thin line) and the locally minimized
experimental structures with AMBER (thick line) for (A) formamide,
(B) imidazole, (C) maleic anhydride, and (D) succinic anhydride. The
minimized experimental structures are also the global minima of global
minimization runs with the dipole moment correction term included.
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AMBER. However, with the dipole moment correction term
included, the dipole moments of the unit cells are smaller.
Values of the dipole moment correction did not exceed 2% of
the total lattice energy.

Formic acid crystallizes in space groupPna21 with four
molecules in the unit cell.60 The crystal structure consists of
infinite planar chains of molecules connected by hydrogen bonds
(2.62 Å). The chains are tightly packed in layers. The interac-
tions between the chains are of the van der Waals type. The
results in Table 2 show that the DISCOVER potential repro-
duced the experimental structure of formic acid with larger
discrepancies than AMBER (average deviations 1.8-2.5% and
1.2%, respectively). The positions and attitudes of molecules
in the structures minimized with either DISCOVER or AMBER
were very similar to those observed experimentally. The
minimized structures contain the same hydrogen bonds as the
experimental structure, but the bond lengths are noticeably
longer in the case of DISCOVER [O(-H)‚‚‚O distance 2.86
Å]; as a result, the volume of the unit cell is larger than with
AMBER. The structural parameters and volume of the unit cell
obtained with the AMBER potential are fairly close to those in
the experimental structure (Figure 6A), despite the zero van der
Waals parameters for the hydroxyl hydrogen in the AMBER
potential. As seen in Table 2, the dipole moment of the unit
cell and the corresponding contribution to the lattice energy were
much larger with the DISCOVER potential (4.2-4.6 D and

0.6-0.8 kcal/mol, respectively). With AMBER, the dipole
moment of the unit cell was 0.2-0.3 D and the contribution to
the energy was negligibly small. This is a result of completely
different charge distributions with DISCOVER and with AM-
BER; the angle between the dipole moment vectors for the
molecular model of formic acid with DISCOVER and with
AMBER is 43°, and the molecular dipole moment is much larger
with DISCOVER.

In general, the results presented in Tables 1 and 2 show that
the deviations of the lattice parameters from their experimental
values are nearly the same for the DISCOVER and the AMBER
potentials. In all cases (except formamide with DISCOVER),
the final structures had the same space group symmetry as the
starting structures which were derived from the experimental
structures. However, structures containing hydrogen bonds are
quite poorly reproduced by the two potentials. The lengths of
hydrogen bonds in the energy-minimized structures are longer
than they are in the experimental structures, especially with the
AMBER potential.

With both potentials, the volumes of the unit cells decreased
during energy minimization (except for formamide, pyrimidine,
and formic acid minimized with the DISCOVER potential).
There are several possible reasons for this effect. Since the
DISCOVER potential parameters were obtained from experi-
mental data for nonzero temperature, thermal effects are partially
included in these parameters. At the same time, thermal motions
are usually anisotropic and, therefore, cannot be described
correctly by using an isotropic potential [this effect may also
be responsible for much larger than an average deviation in one
of the cell edges (for example,b for imidazole)]. The optimiza-
tion of the DISCOVER force field included calculations of
lattice sums over the energy components, in which two layers
of unit cells on each side of the reference cell were taken into
account. For large unit cells, a cutoff of 50 Å was employed.
In our work, the lattice summation was extended to 5 or 6 layers
of unit cells surrounding the reference unit cell. This is much
larger than the typical cutoffs used in deriving potentials and
can easily exceed 50 Å. The potentials were not parametrized
with such large cutoffs, and the extra long-range attractions in
our calculations might cause the unit cell to contract. The
AMBER nonbonded parameters were obtained from simulations
of liquids and may therefore not be strictly applicable to crystals.

5.2. Global Minimizations. After local minimizations of the
experimental structures were carried out, two independent global
minimization runs were then carried out for each molecule and
for each potential, with four molecules in the unit cell (however,
for some of the resulting structures a representation withZ )
2 molecules in the unit cell was possible). In the first run, the
spherical dipole moment correction term 2πp2/3V was added
to the standard Ewald summation, to compensate for any dipole
moment arising in the crystal structures in the computations.
In practice, this ensures that the unit cells in the final structures
will not have large dipole moments, because the dipole moment
correction acts as a penalty function. In the second run, the
dipole moment correction was not added; i.e., the approach
suggested by others54 was explored. Since the first run focuses
the search on structures with zero or low dipole moment of the
unit cell (open circles in Figures 7 and 8), the second run
(without the penalty function) usually adds structures with large
dipole moment (filled diamonds in Figures 7 and 8) to the
lowest-energy structures found in the first run.

For all molecules whose crystal structures have zero dipole
moment, namely formamide, imidazole, and maleic and succinic
anhydrides, the minimized experimental structures were found(60) Nahringbauer, I.Acta Crystallogr.1978, B34, 315.

Figure 5. (A) Experimental structure (thin line) and the locally
minimized experimental structure with AMBER without the dipole
moment correction term included (thick line) for pyrimidine. (B) Global
minimum structure of pyrimidine for the AMBER potential.

Figure 6. (A) Experimental structure (thin line) and the locally
minimized experimental structure with AMBER without the dipole
moment correction term included (thick line) for formic acid. (B) Global
minimum structure of formic acid for the AMBER potential.
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as the global minima of the AMBER potential in the runs with
the correction (in the case of formamide another minimum with
the same energy as the minimized experimental structure has
been found); for the DISCOVER potential, they were found
among the lowest-energy minima (see Tables 3-6). All the
lowest-energy minima for both potentials (open circles in
Figures 7 and 8) represented crystals whose unit cells had zero
or negligibly small dipole moment. The prediction with the
dipole moment correction included was successful for the
AMBER potential (Figure 4) but only moderately successful
for DISCOVER.

Although the unit cells of the experimental structures of those
molecules have zero dipole moment, many artifact structures,
whose unit cells had large dipole moments, were found among
the lowest-energy minima in the runs without the correction
term, with either potential (see Figures 7 and 8). With
DISCOVER, a crystal structure with a large dipole moment was
the global minimum for formamide, imidazole, and maleic
anhydride (see Tables 3-5). With AMBER, a nonphysical
structure whose unit cell had a large dipole moment had the
same energy as the minimized experimental structure for
imidazole (the structure with energy-19.5 kcal/mol in Table
4). This structure (Figure 9) contains chains of molecules
connected by N-H‚‚‚N bonds packed in layers; the chains in
every second layer are parallel, whereas the neighboring layers
are rotated with respect to each other. Molecular chains are also
present in the locally minimized experimental structure (the

global minimum of the run with the correction term included),
but all chains are parallel to each other (Figure 10). The
parameters of the hydrogen bonds presented in Figures 9B and
10B (the angleΦ between the projection of the hydrogen bond
N‚‚‚H on the plane of the acceptor imidazole molecule and the
lone-pair direction, and the angleΘ between the hydrogen bond
N‚‚‚H and a line orthogonal to that plane) show that the
hydrogen bonds in the high dipole moment structure (Figure
9B) are distorted, with the position of the hydrogen deviating
from the average position observed experimentally for this kind
of hydrogen bond,61,62 whereas there is almost no distortion in
the minimized experimental structure.

If the energies of the structures with large dipole moment of
the unit cell, obtained as low-energy structures in the runs
without the dipole moment correction term, are recalculated
assuming a spherical shape for the macrocrystal and adding the
corresponding correction term, they become dramatically higher
than the energies computed by using only the Ewald summation
plus the Lennard-Jones contribution (Figures 7 and 8; the
recomputed energy can be obtained by adding the values on
the horizontal and vertical axes). The lowest-energy structures
of formamide may serve as an example. With the DISCOVER
potential, the energy of the minimized experimental structure
and the energies of the lowest-energy structures, computed
without any correction term, are about-16.4 kcal/mol. Most
of these structures have unit cells with large dipole moments,
and inclusion of the spherical correction term brings their
energies up to about-3.5 kcal/mol; such structures would never
be considered in any global minimization method as candidates
for the correct structure. The dipole moment contribution plays
a major role here.

(61) Vedani, A.; Dunitz, J. D.J. Am. Chem. Soc.1985, 107, 7653.
(62) Klebe, G.Mol. Biol. 1994, 237, 212.

Figure 7. Dipole moment correction term (vertical axis) versus energy
(horizontal axis) for the lowest-energy structures found with DIS-
COVER in the global minimization runs with the correction (open
circles) and without the correction (filled diamonds). Structures found
in both runs are marked by a cross in a black square. If the correction
were included, the energy would be the sum of the values shown on
both axes. Key: (A) formamide; (B) imidazole; (C) maleic anhydride;
(D) succinic anhydride.

Figure 8. Same as Figure 7 but for the AMBER potential.
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For the molecules whose experimental unit cells have non-
zero dipole moment, pyrimidine and formic acid, the energy-
minimized experimental structures were not found by the
SCBDBM method; instead, some lower energy structures with
zero dipole moment were found with or without the spherical
dipole correction (see Tables7 and 8).

With pyrimidine, the minimized experimental structure was
never found in any global optimization, because of its relatively
high energy with both potentials. The global-minimum structure
(Figure 5B) for the AMBER potential consists of stacks of
parallel molecules which do not overlap with each other; this
is compared to the minimized experimental structure in Figure
5A. The main difference lies in the orientation of the molecules
within a stack; in the experimental structure all molecules in
each stack have the same orientation, and in the global-minimum
configuration every second molecule within each stack is rotated
by 180°. Such an arrangement leads to zero dipole moment for
the unit cell in Figure 5B.

Formic acid is another polar crystal for which the minimized
experimental structure was never found during global optimiza-
tions. The energy of the global minimum with the AMBER

potential was more than 0.3 kcal/mol lower than that of the
minimized experimental structure. The two structures are shown
in Figure 6. The experimental structure consists of infinite planar
chains of molecules connected by hydrogen bonds, whereas the
global minimum has a helixlike hydrogen bond arrangement.
The hydrogen bonds in the global-minimum structure have
distorted geometry,62 with the hydrogen atom lying out of the
plane of the acceptor carbonyl group. The AMBER potential46

has special Lennard-Jones parameters for polar hydrogens (the
repulsion for hydrogen that is bonded to nitrogen or oxygen
atoms is lower than for hydrogen that is bonded to carbon, which
represents the reduced charge density around polar hydrogens),
but there is no special directional term for hydrogen bonds, as
in the MM3 force field,63 which can improve the accuracy.
Similar problems with the hydrogen-bond geometry were
observed in a structure of formamide with the AMBER potential.

To address the issue of the influence of the molecular model
on the predictions, the lowest-energy structures obtained in the
global optimization were reminimized locally with the experi-
mental geometries (instead of the symmetrized geometries) in

(63) Lii, J.-H.; Allinger, N. L. J. Comput. Chem.1998, 19, 1001.

Table 4. Parameters of Calculated Structures Obtained by Global Optimization Compared with Locally Minimized Experimental Structures
for Imidazole with DISCOVER and AMBERa

method space group energy, kcal/molV, Å3 D, D ED, kcal/mol a, Å b, Å c, Å R, deg â, deg γ, deg

DISCOVER
minimized exptl P21/c, Z ) 4 -19.51 340.1 0.0 0.00 8.10 4.88 9.89 90.0 119.5 90.0
I P212121, Z ) 4 -20.12 337.6 0.0 0.00 4.84 8.20 8.50 90.0 90.0 90.0
II P1h, Z ) 4 -19.88 333.9 0.0 0.00 5.09 8.19 8.20 86.9 99.0 91.9
III P1h, Z ) 2 -19.88 332.6 0.0 0.00 5.09 8.19 8.87 66.0 85.6 97.2
XIV (min exptl) P21/c, Z ) 4 -19.51 340.1 0.0 0.00 8.10 4.88 9.89 90.0 119.5 90.0

minimized exptl P21/c, Z ) 4 -19.51 340.1 0.0 0.00 8.10 4.88 9.89 90.0 119.5 90.0
I Pna21, Z ) 4 -20.13 337.5 11.8 5.04 8.23 4.75 8.61 90.0 90.0 90.0
II P1h, Z ) 4 -19.76 339.1 0.0 0.00 4.87 7.94 9.65 113.7 92.9 82.9
III P1, Z ) 4 -19.69 346.5 9.4 3.12 5.06 7.27 9.75 95.3 76.4 95.4

AMBER
minimized exptl P21/c, Z ) 4 -19.56 324.5 0.0 0.00 8.07 4.80 9.85 90.0 121.8 90.0
I (min exptl) P21/c, Z ) 4 -19.56 324.5 0.0 0.00 8.07 4.80 9.85 90.0 121.8 90.0
II P212121, Z ) 4 -19.49 325.1 0.0 0.00 4.91 7.58 8.72 90.0 90.0 90.0
III P1h, Z ) 4 -19.47 325.0 0.0 0.00 5.08 8.07 8.51 80.5 104.4 80.1

minimized exptl P21/c, Z ) 4 -19.56 324.5 0.0 0.00 8.07 4.80 9.85 90.0 121.8 90.0
I Pbn21, Z ) 4 -19.56 332.6 14.8 5.00 4.73 7.95 8.85 90.0 90.0 90.0
II P21, Z ) 4 -19.42 333.9 0.0 0.00 5.17 7.68 8.68 90.0 75.6 90.0
III Pc, Z ) 4 -19.39 325.6 15.5 5.60 7.24 4.55 9.91 90.0 84.8 90.0

a For symbols and units, see footnotes to Table 3.

Table 5. Parameters of Calculated Structures Obtained by Global Optimization Compared with Locally Minimized Experimental Structures
for Maleic Anhydride with DISCOVER and AMBERa

method space group energy, kcal/molV, Å3 D, D ED, kcal/mol a, Å b, Å c, Å R, deg â, deg γ, deg

DISCOVER
minimized exptl P212121, Z ) 4 -19.59 402.8 0.0 0.00 6.52 12.18 5.07 90.0 90.0 90.0
I P21/c, Z ) 4 -19.82 393.6 0.0 0.00 5.34 12.54 6.16 90.0 72.5 90.0
II P1h, Z ) 2 -19.79 393.6 0.0 0.00 6.01 7.47 9.71 109.2 103.2 75.3
III P1h Z ) 2 -19.72 395.0 0.0 0.00 3.84 8.89 11.69 97.1 94.2 86.8
V (min exptl) P212121, Z ) 4 -19.59 402.8 0.0 0.00 6.52 12.18 5.07 90.0 90.0 90.0

minimized exptl P212121, Z ) 4 -19.59 402.8 0.0 0.00 6.52 12.18 5.07 90.0 90.0 90.0
I Pna21, Z ) 4 -20.04 405.2 7.0 1.48 7.67 5.85 9.02 90.0 90.0 90.0
II P21/c, Z ) 4 -19.82 393.6 0.0 0.00 5.34 12.50 6.16 90.0 72.5 90.0
III P1h, Z ) 4 -19.79 393.7 0.0 0.00 5.35 8.32 10.06 73.2 75.3 102.7

AMBER
minimized exptl P212121, Z ) 4 -23.03 394.3 0.0 0.00 6.76 11.49 5.07 90.0 90.0 90.0
I (min exptl) P212121, Z ) 4 -23.03 394.3 0.0 0.00 6.76 11.49 5.07 90.0 90.0 90.0
II P21/c, Z ) 4 -22.88 390.1 0.0 0.00 6.65 8.04 7.55 90.0 74.8 90.0
III P212121, Z ) 4 -22.46 403.4 0.0 0.00 4.97 7.19 11.29 90.0 90.0 90.0

minimized exptl P212121, Z ) 4 -23.03 394.3 0.0 0.00 6.76 11.49 5.07 90.0 90.0 90.0
I (min exptl) P212121, Z ) 4 -23.03 394.3 0.0 0.00 6.76 11.49 5.07 90.0 90.0 90.0
II Pc, Z ) 2 -22.98 389.8 12.2 2.88 6.60 8.51 7.10 90.0 77.6 90.0
III P1h, Z ) 2 -22.98 389.8 12.2 2.88 5.39 7.10 10.77 82.4 75.6 97.6

a For symbols and units, see footnotes to Table 3.
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the case of formamide and pyrimidine (with the C-H and N-H
bond lengths adjusted as described in section 4). These two
molecules were chosen because the global optimization resulted
in two structures (Table 3, structure III, DISCOVER with dipole
moment contribution; Table 7, structure II, AMBER with dipole
moment contribution) in which the symmetry of the crystal
depended directly on the molecular geometry (i.e., the molecule
occupied a special position in the mirror plane for formamide
and on a 2-fold axis for pyrimidine). After local minimization,
the structural parameters of the unit cells remained the same
within 0.01 Å and 0.1°; the corresponding energies were lowered
by less than 0.1 kcal/mol each. Because of the change in the
molecular geometry, the symmetry of the unit cells for the two
structures mentioned above was lowered toP212121 for forma-
mide andPc for pyrimidine; all the other structures retained
their previous symmetries. The experimental structures of
formamide and pyrimidine were also reminimized with the

experimental geometries, and the results were the same as those
obtained with our symmetrized molecular model witin 0.01 Å
and 0.1°.

5.3. Conclusions.The global optimization method presented
here, SCBDBM, may be used as a reliable procedure not only
for theoretical crystal structure prediction, but also as a tool for
testing potentials, and, ultimately, for their refinements. It is a
de novo type method, and in the case of crystal computations,
it does not make use of any information other than the force
field parameters and molecular geometry. All the structural
parameters, space groups, and the number of molecules in the
unit cell are results of the prediction.

As with many other potentials, the AMBER and DISCOVER
force fields were parametrized to reproduce experimental
structures without taking the features of the entire potential
surface into account. This procedure may be misleading because
the potentials derived in that manner may produce minima that
are lower in energy than the minimized experimental structure;

Table 6. Parameters of Calculated Structures Obtained by Global Optimization Compared with Locally Minimized Experimental Structures
for Succinic Anhydride with DISCOVER and AMBERa

method space group energy, kcal/molV, Å3 D, D ED, kcal/mol a, Å b, Å c, Å R, deg â, deg γ, deg

DISCOVER
minimized exptl P212121, Z ) 4 -22.31 428.3 0.0 0.00 6.68 12.04 5.33 90.0 90.0 90.0
I (min exptl) P212121, Z ) 4 -22.31 428.3 0.0 0.00 6.68 12.04 5.33 90.0 90.0 90.0
II P21/c, Z ) 4 -22.21 422.5 0.0 0.00 9.43 5.21 9.47 90.0 71.6 90.0
III P21/c, Z ) 4 -21.62 423.5 0.0 0.00 8.46 5.73 9.39 90.0 68.3 90.0

minimized exptl P212121, Z ) 4 -22.31 428.3 0.0 0.00 6.68 12.04 5.33 90.0 90.0 90.0
I (min exptl) P212121, Z ) 4 -22.31 428.3 0.0 0.00 6.68 12.04 5.33 90.0 90.0 90.0
II P1, Z ) 2 -21.37 425.5 7.9 1.79 5.75 8.86 9.06 69.2 99.4 94.5
III P1h, Z ) 2 -21.28 426.2 0.0 0.00 6.01 8.44 8.93 83.2 71.3 87.8

AMBER
minimized exptl P212121, Z ) 4 -27.01 418.0 0.0 0.00 6.78 11.62 5.31 90.0 90.0 90.0
I (min exptl) P212121, Z ) 4 -27.01 418.0 0.0 0.00 6.78 11.62 5.31 90.0 90.0 90.0
II P21/c, Z ) 4 -25.18 431.5 0.0 0.00 5.64 7.55 10.45 90.0 104.3 90.0
III P1h, Z ) 4 -24.99 417.1 0.0 0.00 5.15 9.37 9.63 110.2 90.0 105.9

minimized exptl P212121, Z ) 4 -27.01 418.0 0.0 0.00 6.78 11.62 5.31 90.0 90.0 90.0
I (min exptl) P212121, Z ) 4 -27.01 418.0 0.0 0.00 6.78 11.62 5.31 90.0 90.0 90.0
II P21/c, Z ) 4 -25.18 431.5 0.0 0.00 5.64 7.55 10.45 90.0 104.3 90.0
III Pc, Z ) 2 -24.87 437.1 14.6 3.68 6.84 8.62 7.45 90.0 95.3 90.0

a For symbols and units, see footnotes to Table 3.

Figure 9. (A) Packing of imidazole molecules in the lowest energy
structure found in the run without the correction term. Thick dotted
lines indicate hydrogen bonds. (B) Geometrical parameters of inter-
molecular hydrogen bonds: the angleΦ between the projection of the
hydrogen bond N‚‚‚H on the plane of the acceptor imidazole molecule
and the lone-pair direction and the angleΘ between the hydrogen bond
N‚‚‚H and a line orthogonal to that plane.

Figure 10. Same as Figure 9 but for the minimized experimental
structure, found as the lowest energy structure in the run with the
correction term included.
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such lower-energy minima were not taken into account during
the parametrization, and may not correspond to any real
structures. To assess the quality of the potential (as described
in the Introduction), it is necessary to confirm that the minimized
experimental structure is either the global minimum of the
potential energy surface or at least one of the lowest energy
minima. This verification requires considerable computational
effort, partly because of the high numerical expense to evaluate
the values of the energy and gradient in the numerous local
minimizations that have to be carried out. The SCBDBM method
provides that verification because of the relatively small number
of local minimizations required in the global search.

Another criterium to evaluate the potential is to compare the
minimized experimental structure with the observed structure.
The average deviations of the structural parameters obtained
with both the DISCOVER and AMBER potentials were very
similar and did not exceed 4% for all molecules except
formamide. For this molecule, the deviations were larger and,
in the case of the DISCOVER potential, the symmetry of the
experimental structure was lost during minimization. In general,
the observed structures were reproduced with reasonable ac-
curacy; at the same time, both potentials were not able to capture
the fine details of structures containing hydrogen bonds.

Since the global minimum corresponds to the minimized
experimental structure, i.e., the predictions were successful, for
imidazole, and maleic and succinic anhydrides, with the
AMBER potential, in the global search with the correction term
included, this suggests that the potential is reasonable for these
molecules. For formamide two structures with almost equal
energies (the energy difference being less than 0.01 kcal/mol)
were found, one of them being the minimized experimental
structure. In this case, it is hard to evaluate the prediction (and
quality of the potential as well). The predictions for the same
molecules under the same conditions with the DISCOVER
potential, which were less successful, indicate flaws in the
DISCOVER force field. For those same molecules, the existence
of very low-energy structures with a high dipole moment with
both potentials, in the runs in which the dipole correction term
was omitted, suggests that calculating the electrostatic energy
using the Ewald summation alone is incorrect.

This explanation does not pertain to the failure to predict the
crystal structures of pyrimidine and formic acid in searches with
no dipole moment correction. With both potentials, the dipole
moment spherical correction terms of the locally minimized
experimental structures cannot compensate for the differences
between the energies of the minimized experimental structures

Table 7. Parameters of Calculated Structures Obtained by Global Optimization Compared with Locally Minimized Experimental Structures
for Pyrimidine with DISCOVER and AMBERa

method space group energy, kcal/molV, Å3 D, D ED, kcal/mol a, Å b, Å c, Å R, deg â, deg γ, deg

DISCOVER
minimized exptl Pna21, Z ) 4 -14.19 406.7 3.5 0.23 11.21 9.94 3.65 90.0 90.0 90.0
I P21/n, Z ) 4 -15.01 409.6 0.0 0.00 3.97 10.35 9.97 90.0 86.6 90.0
II P212121, Z ) 4 -14.89 412.1 0.0 0.00 5.76 7.07 10.11 90.0 90.0 90.0
III P1h, Z ) 4 -14.74 415.0 0.0 0.00 6.97 6.97 9.86 69.3 110.7 90.0

minimized exptl Pna21, Z ) 4 -14.46 406.9 4.1 0.33 11.02 9.90 3.73 90.0 90.0 90.0
I P212121, Z ) 4 -14.89 412.1 0.0 0.00 5.76 7.07 10.11 90.0 90.0 90.0
II P1, Z ) 4 -14.73 409.3 2.9 0.24 7.39 7.68 7.68 88.7 76.1 103.9
III P21, Z ) 2 -14.73 411.7 6.0 1.06 7.31 5.58 10.61 90.0 72.2 90.0

AMBER
minimized exptl Pna21, Z ) 4 -15.28 394.7 3.7 0.35 11.01 9.83 3.64 90.0 90.0 90.0
I P1h, Z ) 2 -16.28 382.6 0.0 0.00 7.21 7.66 11.76 71.6 52.2 59.0
II I2/a, Z ) 4b -16.27 382.6 0.0 0.00 6.66 9.30 6.84 90.0 64.5 90.0
III P1h, Z ) 2 -16.27 382.6 0.0 0.00 5.88 6.84 10.18 85.0 93.6 70.2

minimized exptl Pna21, Z ) 4 -15.64 394.9 4.0 0.34 10.88 9.84 3.69 90.0 90.0 90.0
I P1h, Z ) 2 -16.28 382.6 0.0 0.00 7.21 7.66 11.76 71.6 52.2 59.0
II P1h, Z ) 2 -16.27 382.6 0.0 0.00 5.88 6.66 10.42 83.9 85.4 108.4
III P1h, Z ) 4 -16.15 328.5 0.0 0.00 6.77 6.91 9.96 80.4 70.2 60.7

a For symbols and units, see footnotes to Table 3.b Molecules occupy special positions on the 2-fold axis.

Table 8. Parameters of Calculated Structures Obtained by Global Optimization Compared with Locally Minimized Experimental Structures
for Formic Acid with DISCOVER and AMBERa

method space group energy, kcal/molV, Å3 D, D ED, kcal/mol a, Å b, Å c, Å R, deg â, deg γ, deg

DISCOVER
minimized exptl Pna21, Z ) 4 -14.69 198.6 4.2 0.66 10.66 3.38 5.45 90.0 90.0 90.0
I P21/a, Z ) 4 -15.81 188.7 0.0 0.00 6.31 5.04 6.59 90.0 115.8 90.0
II P1h, Z ) 4 -15.75 191.8 0.0 0.00 5.39 6.15 6.28 84.8 72.1 75.4
III P21/c, Z ) 4 -15.74 192.7 0.0 0.00 3.39 5.64 10.51 90.0 85.1 90.0

minimized exptl Pna21, Z ) 4 -15.43 196.4 4.6 0.80 10.69 3.29 5.58 90.0 90.0 90.0
I P1h, Z ) 2 -15.75 191.8 0.0 0.00 5.39 6.15 6.28 84.8 72.1 75.4
II P1h, Z ) 2 -15.72 190.2 0.0 0.00 5.45 5.60 6.45 88.1 90.9 74.9
III P21, Z ) 2 -15.60 195.9 4.5 0.86 6.02 5.64 6.41 90.0 63.9 90.0

AMBER
minimized exptl Pna21, Z ) 4 -18.75 190.7 0.2 0.00 10.53 3.50 5.17 90.0 90.0 90.0
I P212121, Z ) 4 -19.17 190.4 0.0 0.00 10.32 3.53 5.22 90.0 90.0 90.0
II P21/c, Z ) 4 -19.06 190.9 0.0 0.00 3.61 9.33 5.67 90.0 87.2 90.0
III P21, Z ) 2 -18.99 189.0 0.6 0.02 6.25 5.24 6.26 90.0 67.2 90.0

minimized exptl Pna21, Z ) 4 -18.75 190.8 0.3 0.00 10.54 3.50 5.17 90.0 90.0 90.0
I P21/c, Z ) 4 -19.06 190.9 0.0 0.00 3.61 9.33 5.67 90.0 87.2 90.0
II P21, Z ) 2 -19.00 189.3 0.7 0.02 6.25 5.24 6.26 90.0 67.2 90.0
III P1, Z ) 4 -18.87 195.0 0.6 0.02 3.47 7.50 7.64 88.4 87.3 79.0

a For symbols and units, see footnotes to Table 3.
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and those of the predicted nonpolar global minima structures.
Clearly, the potentials are not adequate for these two molecules.

The present work does not provide an answer as to how to
predict highly polar crystal structures, but it suggests that the
dipole moment correction term may play a key role in all
predictions, for polar and nonpolar crystals.

6. Computational Details

The program was parallelized on the fine-grain level; i.e., the energy
and the gradient calculations were carried out in parallel.

All calculations were carried out on an IBM SP2 supercomputer at
the Cornell Theory Center; the numerical expense depended on the
size of the molecule, and the number of molecules in the unit cell. For
maleic anhydride, with 4 molecules in the unit cell, full global
optimization required 19 h, using 20 processors of the SP2 supercom-
puter. Typically, about 7000 local minimizations were carried out. Most
of these minimizations were carried out while finding trajectories in
the reversing and reversed-reversing procedures. In these cases,
minimization is started from a previously minimized structure corre-
sponding to a slightly different deformation parameter (slightly larger
for the reversing procedure, slightly smaller for the reversed-reversing
procedure), and, therefore, it is extremely fast. The real numerical
expense is incurred during the local minimizations in the local search;
the typical number of local searches was about 700.

All local minimizations were carried out using the SUMSL
algorithm.64 The CRYCOM program65 was used for crystal structure
comparison and space group determination.
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